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The Hardy-Littlewood maximal operator

Definition
We consider the Hardy-Littlewood maximal operator defined by

Mf(x) = sup
x∈Q

1

|Q|

∫
Q

|f(y)|dy.
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Lp and Lp,∞ spaces

Definition
Given a weight w > 0, for 1 ≤ p <∞:

‖f‖pLp(w) =

∫
Rn
|f(x)|pw(x)dx,

and also
‖f‖pLp,∞(w) = sup

t>0
tp
∫
{|f |>t}

w(x)dx.

It holds that Lp ( Lp,∞.

For an operator T , we will say

‖Tf‖Lp . ‖f‖Lp  STRONG-TYPE (p, p)
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Lp and Lp,∞ spaces

Definition
Given a weight w > 0, for 1 ≤ p <∞:

‖f‖pLp(w) =

∫
Rn
|f(x)|pw(x)dx,

and also
‖f‖pLp,∞(w) = sup

t>0
tpw({|f | > t}).

It holds that Lp ( Lp,∞. For an operator T , we will say

‖TχE‖Lp,∞ . ‖χE‖Lp  RESTRICTED WEAK-TYPE (p, p)
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Ap weights – Muckenhoupt (1972)

For every 1 < p <∞:

‖Mf‖Lp(w) . ‖f‖Lp(w) ⇔ w ∈ Ap,

and w ∈ Ap if

‖w‖Ap = sup
Q

w(Q)

|Q|

(
w−p

′/p(Q)

|Q|

)p/p′
<∞.

For p = 1,
‖Mf‖L1,∞(u) . ‖f‖L1(u) ⇔ u ∈ A1,

and u ∈ A1 if

‖u‖A1 = inf{C > 0 : Mu(x) ≤ Cu(x) a.e.} <∞.

We write, for 1 ≤ p <∞, ‖Mf‖Lp,∞(w) . ‖f‖Lp(w) ⇔ w ∈ Ap.
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Characterization of Ap

P. Jones’ Factorization:

w ∈ Ap ⇔ w = v1−pu, for some u, v ∈ A1.

Coifman - Rochberg’s construction of A1 weights:

v ∈ A1 ⇔ v ≈ (Mf)δ, for some f ∈ L1
loc and 0 ≤ δ < 1.

Therefore, we can think of Ap weights as those of the form:

Proposition

Ap =
{

(Mf)δ(1−p)u : f ∈ L1
loc, 0 < δ < 1 and u ∈ A1

}
.
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An important property: Reverse Hölder

With this characterization, for every w ∈ Ap:

w = (Mf)δ(1−p)u = (Mf)δ(1−p)(Mg)β .

So it is immediate to see that, for some small ε,
(
ε < min

{
1−δ
δ , 1−β

β

})
,

w1+ε = (Mf)δ
′(1−p)(Mg)β

′
,

with 0 < δ′, β′ < 1 and hence,

w1+ε ∈ Ap.
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Rubio de Francia

In this setting:

Theorem (Rubio de Francia’s Extrapolation - 1984)

Given a sublinear operator T such that for some 1 ≤ p0 <∞ we have

‖Tf‖Lp0,∞(w) . ‖f‖Lp0 (w) for every w ∈ Ap0 ,

then, for every 1 < p <∞,

‖Tf‖Lp(w) . ‖f‖Lp(w) for every w ∈ Ap.

Remark
Notice that the endpoint p = 1 cannot be reached.
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Goal

Remark (This is the plan...)

‖Tf‖Lp0,∞(w) . ‖f‖Lp0 (w), ∀w ∈ Ap0
6⇓

‖Tf‖L1,∞(u) . ‖f‖L1(u), ∀u ∈ A1.

Take for instance T = M ◦M .
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Reaching L1 via Extrapolation – C. Domingo-Salazar
Extrapolation theory
Classical Ap theory

Goal

Remark (This is the plan...)

‖TχE‖Lp0,∞(w) . ‖χE‖Lp0 (w), ∀w ∈ Ap0
6⇓

‖Tf‖L1,∞(u) . ‖f‖L1(u), ∀u ∈ A1.

A weaker assumption on the boundedness.



Reaching L1 via Extrapolation – C. Domingo-Salazar
Extrapolation theory
Classical Ap theory

Goal

Remark (This is the plan...)

‖TχE‖Lp0,∞(w) . ‖χE‖Lp0 (w), ∀w ∈ Ap0
6⇓

‖Tf‖L1,∞(u) . ‖f‖L1(u), ∀u ∈ A1.

A stronger assumption on the weights.



Reaching L1 via Extrapolation – C. Domingo-Salazar
Extrapolation theory
Classical Ap theory

Goal

Remark (This is the plan...)

‖TχE‖Lp0,∞(w) . ‖χE‖Lp0 (w), ∀w ∈ Âp0
” ⇓ ”
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A stronger assumption on the weights.
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Goal

Remark (This is the plan...)

‖TχE‖Lp0,∞(w) . ‖χE‖Lp0 (w), ∀w ∈ Âp0
X ⇓ X

‖TχE‖L1,∞(u) . ‖χE‖L1(u), ∀u ∈ A1.

We only get restricted weak-type (1,1), but we will usually deal with it.

But, how do we find these new weights Âp??
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Searching the weights

Kerman and Torchinsky (1982): For 1 ≤ p <∞:

‖MχE‖Lp,∞(w) . ‖χE‖Lp(w) ⇔ w ∈ ARp

where, for 1 ≤ p <∞, w ∈ ARp if

‖w‖ARp = sup
F⊆Q

|F |
|Q|

(
w(Q)

w(F )

)1/p

<∞.

Remark

AR1 = A1... we’ll see why this makes sense!!
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Âp weights and a new extrapolation

Searching the weights

Kerman and Torchinsky (1982): For 1 ≤ p <∞:

‖MχE‖Lp,∞(w) . w(E)1/p ⇔ w ∈ ARp

where, for 1 ≤ p <∞, w ∈ ARp if

‖w‖ARp = sup
F⊆Q

|F |
|Q|

(
w(Q)

w(F )

)1/p

<∞.

Remark

AR1 = A1... we’ll see why this makes sense!!



Reaching L1 via Extrapolation – C. Domingo-Salazar
Extrapolation theory
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Searching the weights

The key fact for the new extrapolation:

Theorem (Carro, Grafakos, Soria)

Given a locally integrable function f and u ∈ A1, then

(Mf)1−pu ∈ ARp ,

with
‖(Mf)1−pu‖ARp . ‖u‖

1/p
A1
.

Definition

Âp =
{
w = (Mf)1−pu, where f ∈ L1

loc, u ∈ A1

}
⊆ ARp ,
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The extrapolation result

Theorem (Carro, Grafakos, Soria)

Given a sublinear operator T such that for some 1 < p0 <∞ we have

‖TχE‖Lp0,∞(w) . w(E)1/p0 for every w ∈ Âp0 ,

then, for every 1 ≤ p <∞,

‖TχE‖Lp,∞(w) . w(E)1/p for every w ∈ Âp.

Remark

Here we reach the endpoint p = 1, and Âp = A1!
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Overview

Ap =
{

(Mf)δ(1−p)u : δ < 1, u ∈ A1

}
——————————–

T w.t (p0, p0) for every w ∈ Ap0w�
T s.t (p, p) for every w ∈ Ap
(1 ≤ p0 <∞, 1 < p <∞)

Âp = {(Mf)1−pu : u ∈ A1}

——————————–

T r.w.t (p0, p0) for every w ∈ Âp0w�
T r.w.t (p, p) for every w ∈ Âp
(1 < p0 <∞, 1 ≤ p <∞)
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A weaker hypothesis

If for some 1 < p0 <∞

‖TχE‖Lp0,∞(w) . w(E)1/p0 ∀E,w ∈ Âp0 .

then, for every 1 ≤ p <∞

‖TχE‖Lp,∞(w) . w(E)1/p ∀E,w ∈ Âp.

But we also have: If for some 1 < p0 <∞

‖TχE‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 ∀E, u.

then, for every 1 ≤ p <∞

‖TχE‖Lp,∞((MχE)1−pu) . u(E)1/p ∀E, u.
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Statement

Theorem (Carro, D-S)

Given an operator T such that for some 1 ≤ p0 <∞ and every u ∈ A1:

‖TχE‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 ,

then for every u ∈ A1,

‖TχE‖L1,∞(u) . u(E).

Theorem (v. 2.0)

Given an operator T such that for every u ∈ A1 there is 1 ≤ p0 <∞
such that:

‖TχE‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 ,

then for every u ∈ A1,

‖TχE‖L1,∞(u) . u(E).
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Extrapolation theory

(ε, δ)− atomic operators

From restricted weak-type to weak-type

Question

When does Restricted Weak-Type (1,1) imply Weak-Type (1,1)???

In general, it is not true!! For instance, take the operator

Af(x) =

∥∥∥∥f(·)χ(0,x)(·)
x− ·

∥∥∥∥
L1,∞(0,1)

,

which is related to Bourgain’s return time theorems.

It is immediate to check that

AχE ≤MχE ,

so it is of restricted weak-type (1,1) for weights in A1. However it is not
of weak-type (1,1)!!
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AχE ≤MχE ,

so it is of restricted weak-type (1,1) for weights in A1. However it is not
of weak-type (1,1)!!
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Extrapolation theory

(ε, δ)− atomic operators

From restricted weak-type to weak-type

Definition

A sublinear operator T is (ε, δ)−atomic if, for every ε > 0, there exists
δ > 0 s.t.

‖Ta‖L1+L∞ ≤ ε‖a‖1,

for every δ-atom a
(∫
a = 0 and supp a ⊆ Q with |Q| ≤ δ

)
.

For instance:

Tf(x) = K ∗ f(x),

with K ∈ Lp for some 1 ≤ p <∞, is (ε, δ)−atomic.

If {Tn}n is a sequence of (ε, δ)−atomic operators, then:

T ∗f(x) = sup
n
|Tnf(x)|, and Tf(x) =

(∑
n

|Tnf(x)|q
)1/q

,

are (ε, δ)−atomic approximable, for every q ≥ 1.
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Extrapolation theory

(ε, δ)− atomic operators

From restricted weak-type to weak-type

Proposition

If T is (ε, δ)− atomic (approximable), then for every u ∈ A1:

Restricted Weak-Type (1,1) ⇐⇒ Weak-Type (1,1).

Remark

This explains why AR1 = A1!!
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Extrapolation theory

(ε, δ)− atomic operators

Applications

More examples:
(i) If u(x, t) = Pt ∗ f(x) is the Poisson integral of f , the Lusin area

integral is defined by

Sαf(x) =

(∫
Γα(x)

|∇u(y, t)|2 dydt
tn−1

)1/2

,

where Γα(x) = {(y, t) ∈ Rn+1
+ : |y − x| < αt}.

(ii) The Littlewood-Paley g-function

g(f)(x) =

(∫ ∞
0

t|∇u(x, t)|2dt
)1/2

.

(iii) The intrinsic square function Gα (introduced by M. Wilson), Haar
shift operators, singular integrals, averages of operators...
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The Bochner-Riesz operator at the critical index

Bochner-Riesz

Definition (The Bochner-Riesz operator)

Given λ > 0,
(̂Tλf)(ξ) = (1− |ξ|2)λ+f̂(ξ).

When λ > n−1
2 ,

|Tλf | .Mf.

From now on, we fix λ = n−1
2  THE CRITICAL INDEX.
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The Bochner-Riesz operator at the critical index

The (short) story

In 1988, M. Christ shows that Tλ is of weak-type (1,1) (without
weights).

In 1992, X. Shi and Q. Sun prove that Tλ is of strong-type (p, p) for
Ap.

In 1996, A. Vargas obtains the weak-type (1,1) for weights in A1.
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The Bochner-Riesz operator at the critical index
A restricted weak-type estimate

Our result

We prove that

Theorem (Carro, D-S)

Given u ∈ A1, for some 1 < p0 <∞

‖Tλ(χE)‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 .

This is stronger than A. Vargas’ result about the weak-type (1,1) for
A1 weights.
It also allows to get endpoint results for average operators, as we
will see later on.
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Decomposition of the kernel

We use the standard decomposition of the convolution kernel:

Tλf = K ∗ f =

 ∞∑
j=1

Kj

 ∗ f,
with |Kj(x)| . 2−njχB(0,2j)(x). Clearly, for every j ≥ 1,

|Kj ∗ f(x)| .Mf(x).
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A restricted weak-type estimate

Reverse Hölder to the rescue in Ap–theory

Fix w ∈ A2. We have, for every j ≥ 1:

‖Kj ∗ f‖2 . 2−cnj‖f‖2, (M. Christ)

‖Kj ∗ f‖L2(w) . ‖f‖L2(w).

Interpolating with change of measure: For every 0 < θ < 1,

‖Kj ∗ f‖L2(wθ) . 2−cnj(1−θ)‖f‖L2(wθ).

We take w1+ε ∈ A2, θ = 1
1+ε , and we are done for p = 2. We use Rubio

de Francia’s extrapolation to conclude that

Tλ : Lp(w) −→ Lp(w), w ∈ Ap (1 < p <∞)
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Idea Behind the Proof of:
Theorem (Carro, D-S)

Given u ∈ A1, for some 1 < p0 <∞

‖Tλ(χE)‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 .

X Decomposition of the kernel K =
∑
j Kj ,

X Decomposition of the set E =
⋃
k Ek,

X Main Lemma.
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Decomposition of E

Given 0 < α < 1, we have disjoint dyadic cubes {Qki }i,k and we can
decompose a set E ⊆ Rn

E =
⋃
k≥0

Ek =
⋃
k≥0

E ∩
(
∪iQki

)
, with

|E ∩Qki |
2nk

≈ α.

E = E1 ∪ E2 ∪ E3
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Main Lemma

Given 0 < α < 1, we can decompose a set E ⊆ Rn

E =
⋃
k≥0

Ek =
⋃
k≥0

E ∩
(
∪iQki

)
.

Lemma
Let 0 < α < 1, E = ∪kEk and u ∈ A1. Then, for every 1 ≤ s <∞, if

Fs(x) :=

∞∑
j=s

Kj ∗ χEj−s(x),

(a) ‖Fs‖22 . 2−cnsα|E|,

(b) ‖Fs‖2L2(u) . αu(E),

(c) ‖Fs‖2L2((MχE)−1) . |E|,

(d) ‖Fs‖2L2(u) . 2−sεαu(E),

(e) ‖Fs‖2L2((MχE)−θu) . 2−sβα1−θu(E).
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Weighted results for Tλ

So we have that

‖Tλ(χE)‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 , (u ∈ A1, p0 > 1),

⇓

‖Tλf‖L1,∞(u) . ‖f‖L1(u), (u ∈ A1),

⇓

‖Tλf‖Lp(w) . ‖f‖Lp(w), (p > 1, w ∈ Ap).
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Averages of operators

An application

Consider a radial Fourier multiplier

T̂mf(ξ) = m(|ξ|2)f̂(ξ), ξ ∈ Rn,

where m ∈ L∞(0,∞) such that t
n−1
2 D

n+1
2 m(t) ∈ L1(0,∞).

Then, one
can prove that there is Φ ∈ L1(0,∞) such that

m(|ξ|2) =

∫ ∞
0

(
1− |ξ|

2

s2

)n−1
2

+

Φ(s)ds.
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An application

With this, we have

Tmf(x) =

∫ ∞
0

Bsf(x)Φ(s)ds,

where

B̂sf(ξ) =

(
1− |ξ|

2

s2

)n−1
2

+

f̂(ξ).

If K is the kernel associated with Tλ, and Ks with Bs, then

Ks(x) = snK(sx).

From the estimate for Tλ, we deduce the uniform bound

‖BsχE‖Lp0,∞((MχE)1−p0u) . u(E)1/p0 .
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An application

Using now that Lp0,∞ is a Banach space, we can use Minkowski’s
inequality!!

‖TmχE‖Lp0,∞((MχE)1−p0u) .
∫ ∞

0

‖BsχE‖|Φ(s)|ds . u(E)1/p0 .

From this, we extrapolate down to p = 1:

‖Tmf‖L1,∞(u) . ‖f‖L1(u), u ∈ A1.

Remark

Notice that if we only have a weak-type (1,1) estimate, averages do not
inherit this property.
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Thank you for your attention!

Muchas Gracias!
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